PP u?ﬂ‘:“??’!m

ISI/RR~80-84
October 1980

Neil M. Goldman
David S. Wile

A Database Foundation for Process Specifications

ADAO9256%7

% .
Y‘”‘f v o v g
t, s : - M ’

Apprc.fvo‘d for pukwi;c—;a;e:
Distribution Unlimiteq

B o
8 DISTRISUTION & A543, FNT K
b |
™1
[y

INFORMATION SCIENCES INSTITUTE

N § 4676 Admiralty Way[Marina del Rey[California 90291
NIVERSI1Y of SOUTHERN CALIFORNIA (213) 8221511

80 1201 2590

PR

— INCLASSIFIED
! SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS
X REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
. 2. GOVY ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
| /| 1s1/RR-80-84 AD-Ao92 é—é]
1 4. ITL and Subtitie) YPE OF REFORY & FEMOD COVERED
- o SRR <9 [P€ OF REPORT 8 PeEmOD
- (ég A Database Foundation for Process ‘ Research J&Qﬂ
i: Specificationsc [“ ot

- HORTT) CONTlACTORGRANTNuMOEIn)

/Oy Neil M. /Eoldman , R
David S. ile / r" DAHC15- 72-c—63o) [

1 9 PERFORMING ORGANIZATION NAME AND ADDRESS / . PROGRAM ELKE:EINTTNPU 0.
USC/Information Sciences Institute A//é‘ j &! / ‘ ﬂz
4676 Admiralty Way 65
Marina del Rey, CA 90291 ‘

t1. CONTROLLING OFFICE NAME AND ADDRESS

T

1400 Wilson Blvd.
Arlington, VA 22209 33

4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oftice) 18. SECURITY CLASS. (of this report)

Unclassified

1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release and sale;
distribution is unlimited.

=1

. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, {(dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverss gide if necessary and identily by block number)

abstract data model, formal process specification language, formal

specification, natural language, specification language

20. ABSTRACT (Continue on reverse side i necessary and identify by block number)
BN
)
7
(OVER) -~

DD, :2":“" 1473 eoiTiON OF 1 NOV 6318 OBSOLETE

./—
$/N 0102-014+ 6601 __IINCLASSI.E.IED_______G //
SECURITY CLASSIFICATION OF THIS PAGE (When Date nteres) . 7~

4 YLD ekl — 4

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

20. ABSTRACT

A language suitable for system specification should allow a specification to
be based on a cognitive model of the process being described. In part, such a
language can be obtained by properly combining certain conceptual abstractions
of data models with reference and control concepts designed for progranming
languages. Augmenting the resulting language with formal versions of several
natural language constructs further decreases the cognitive distance between
specifications of large systems and the modelled world.

Several core elements of such a specification language are developed in this
report. Emphasis is placed on modes of expression, such as declarative
constraints and temporal reference, which are derived from natural language
but are not available in existing formal languages.

A

ession For

Acc
“npris omhEl

pric 707

INCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

PP

ISI/RR-80~84
October 1980

Neil M. Goldman
David S. Wile

A Database Foundation for Process Specifications

INFORMATION SCIENCES INSTITUTE

366 Admnalty War) Marina del Re 1/(}:/1_{:»-:1/‘: BIINTY
(ISR 1501

UNIVCERSITY OF SOUTHERN CALHORNILA

THIS RESTARCH IS SUPPORTED BY THE DEFENSE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO. DAHC 15

72 C 0308, ARPA ORDER NO. 2223.
VIEWS AND CONCLUSIONS CONTAINED IN THIS AEPORT ARE THE AUTHORS' AND SHOULD NOT BE INTERPRETED AS
REFAESCNTING THE OFFICIAL OPINION OR POLICY OF DARPA, THE U.S. GOVERNMENT, OR ANY PERSON OR AGENCY

CONNECTED WITH THEM,

v e AR R RCR

CONTENTS

Acknowledgments iv

1. Introduction 1

2. Specifying the Domain of a Process 2
2.1 Objects and Types 3
2.2 Relations 4
2.3 Expressions, Patterns, and Predicates 5
2.4 Constraints 8 3
2.5 Derivad Relationships 8

3. Specifying the Dynamics of a Process 10
3.1 Control Structures !l
3.2 Actions 11
3.3 Procedural Requirements 14
3.4 Data Triggered Processing 15
3.5 Temporal Reference 17
3.8 Process Granularity 19
3.7 Constraints and Non-Determinism 21
3.8 Anomaly Control 24

4. Conclusion 24

References 27

[

- alietinapma—... . -

v

ACKNOWLEDGMENTS

The ideas presented in this report arose during lengthy discussions within a closely
knit group of colleagues. As such, the individual contributions of the group members are
Impossible to identify. The authors would like to acknowledge the major influence on this

work of other members of this group, consisting of Bob Balzer, Lee Erman, Martin Feather,
and Phil London.

I. INTRODUCTION

A major effort is under way within computer science to design new languages that will
enhance the development of reliable and maintainable software, particularly for large
applications. Through careful structuring [13] and encapsulation [17] of information,
some new programming languages permit hierarchical development of large programs.
Each layer of the hierarchy Is understandable in terms of properties abstracted from
modules in the lower layers. From the definitions of the modules at the base of the
hierarchy, a compiler can (or could) produce an acceptable implementation of the entire
system,

Another line of development has been a search for languages with more expressive
power than Is provided in programming languages [6, 9, 16]. The designers of these
specification languages are willing to forego the ability to have their specifications
maochanically compilable into (efficient) implementations. In return, they hope to make it
casier to write a formal specification of a process and, more important, to increase the

likctihood that the process specified is indeed the one desired.1

Balzer and Goldman [2] enumerate several language principles claimed to be beneficial
for both the creation and maintenance of large software systems. These include the
requirement that & specification be a cognitive model of the process being specified. In
qencral, a software system Is intended to represent the activity in some "ideal world,"
which may be an abstraction of a real-world process, a purely mental conception of the
desired behavior, or a combination of the two. We hope to minimize the “translation
distance” from this ideal world to its formal representation by permitting that
represaontation to model directly the ideal insofar as possible. This should increase our
confidence that a specification in fact matches the intended ideal.

Maintenance involves, as its first step, translating changes to the ideal world into
corresponding changes to the specification. If the specification is a cognlitive model, the
amount of change required In the specification should be comparable to the amount of
change in the ideal. We believe that most maintenance changes represent fairly small
changes to the ideal world.

A good source of Ideas for language components that help in constructing cognitive
madels is natural language. Natural language has been roundly criticized in some circles
[12] because of its informality and ambiguity. Clearly a formal language cannot adopt
theso characteristics, although they contribute significantly to the utility of natural
lanquaqges for communication. But natural languages also contain a variety of modes of
oxpression that are richer than those provided by even the highest level programming
lanquaqes, yet that have readily formalizable counterparts. A number of these are
developed In this report. One reason for their absence from programming languages Is
undoubtedly the difficulty of providing for (efficient) computer implementation of their

1
We think of owr language as specification oriented. Out goal 18 to have programs produced from specifications through
8 transformational devetopment [3].

bl Sl AR L

2 A DATABASE FOUNDATION

ageneral use. This Is not a restriction on natural languages, which are generally
concerned with communicating only the requisite external behavior of a process. The
implementation of that process, whether on a computer or otherwise, is an orthogonal
concern.

Since the ploneering work of Codd [8] on relational data bases, several distinct data
models have been developed and studied. An often noted characteristic of these models
Is that they provide not only the basis for machine storage and manipulation of data, but
a coqnitive model of the data domain as well. In fact, these data models bear great
similarity to the semantic nets used in artificial intelligence programs for understanding
natural language, as demonstrated In [15].

The specification language described below is based on such a data model. We
believe that any process can, and should, be defined in terms of a variety of entity types,
spocific to the process, which are associated with one another by means of process
specific relations, and acted upon by process specific actions. These actions consist of
combinations of creation and destruction operations on these entities and associations.

Scection 2 of this report develops the static aspects of this model. It presents means
for specifying the structural regularity of the data domain, including a hierarchy of object
types, relations on those types, constraints on data states, and derived relationships
(nlternative "views"). It also lays out a powerful query language for expressing
predicates on the data states and for referring to objects in those states. Section 3
introduces the means for defining the dynamic aspects of a process. These mechanisms
rely on the underlying data mode! to define a number of rich constructs not avaiiable in
even very high-level programming languages. We point out how each of these
corresponds to a descriptive capability in natural language, and why each enhances the
spocification of large systems.

Notation

In this report, meta-concepts of the language are printed within angle brackets (<>).
In syntactic templates, braces ({}) enclose optional elements, and ellipses (...) indicate
allowable repetition of the preceding constituent. The "reserved words" of the language
are underiined.

The report uses examples drawn from an ideal world of ships, ports, piers, cargos, etc.
Within the examples and text describing them, the names of these "types" are printed In
bold lower case. Variable and parameter names are printed in italicized lower case. The
names of relations and actions are printed in BOLD UPPER CASE. Finally, objects
refarred to literally are printed in Mixed Case Iltalics.

2. SPECIFYING THE DOMAIN OF A PROCESS

An ideal world is not an arbitrary collection of objects related in unstructured ways.
Rather, the objects can be categorized into varlous type classifications. There are only

FON PROCESS SPECIFICATIONS

certain kinds of relationships in which the various types of objects may participate.
Neither does the ideal world permit arbitrary combinations of these objects and
relationships to coexist.

it Is important to capture the structure of the ideal world in the specification. Doing
this nctually makes it easier to specify the process taking place in the ideal world. Even
more important, it enhances our ability to alter the specification so that it conforms to a
changed ideal world. This Is the source of our ability to maintain software systems
created from the specification. The structure of the ideal world is speciﬂed through a
variety of {declaration> forms described in the following sections.

2.1 Ob jects and Types

The various types of objects in the ideal world are named in rype declarations. The
simplest type declaration simply lists the names of various types:

tupe ship: pier; cargo: slip; crewmember end type

A name so declared may be used as a {type identifier> elsewhere. Some types may be
subtypes of others; this is declared by including a modifier in a type declaration:

type oiltanker, a kind of ship :
officer, a kind of crewmember
end type

This declaration states that every oiltanker Is also a ship. Analogously, it makes officer
a subtype of crewmember. Although the collection of oiltankers and ships may change
as a process executes, no object is ever an oiitanker but not a ship. There is no need
for the specification to include manipulations of the data specifically to maintain this
invariant; It is ensured by the declaration.

Smith and Smith [14] have pointed out many of the virtues of having such type
hierarchies from the standpoint of database design. The most salient advantages in a
specification language are that any relations and operations defined on a type are
automatically defined on its subtypes, and that the types can be used in the data
manipulation language to strengthen predicates in a natural and concise manner.

We can also define synonyms for types, and define one type as a restriction of
another:

type message, = string;
latitude, = integer in range [(-90,90]:
longitude, = integer in range [-180,180]

end type

This declaration states that message is a synonym for the predefined type string, and
that latitude and longitude are particular subranges of the predefined type Integer.

Sometimes a specification must refer to particular individual objects. These can be
introduced when their types are declared.

4 A DATABASE FOUNDATION

type port, > (Searrle, Santa Barbaral end type

daclares that the type port has (at least) two distinct instances, which will be referred
to in the specification by the literals Seartle and Santa Barbara, whereas

type grain, a kind of cargo, ={Corn,Wheat! ;

fuel, a kind of cargo, =1{0il, Natura! Gas)
end type

declares grain and fuel to be subtypes of cargo, with their instances totally enumerated
by literals. No further instances of grain or fuel may be defined or created.

2.2 Relations

Our conception of relations corresponds closely to that seen In Chen's

entity-relationship diagrams [?].2 A relation is defined to have some number of roles,
each role having a name and a type. At any stage of a process, each relation contains a
collection of tuples. Each tuple in a relation has an object filling each of its roles. The
objnct filling a role must be an instance of that role's type. The role types thus serve to
restrict the tuples that can appear in a relation.

The deoclaration of an n-ary relation has the form:

relation <relation identifier> (<role>l.....<role>n);

end relation

Each <role> is denoted by an <id:type), which is simply an arbitrary name, followed by a
colon, followed by a type Iden*'fier, e.g., s:ship. The identifier preceding the : is the role
name, and the type Identifier names the role type. By convention, a type name ¢ alone
can be used as an Id:type to abbreviate :t, and a name of the form t.d, for any digit d, in
place of td:t. For example, ship:ship can be abbreviated as ship, and ship.l:ship as
shipl.

A relation PORTOFCALL between ships and ports for which they are bound and a
relation SHIPPINGPIER between plers and the cargos that they handle are declared by:

relationn
PORTOFCALL (ship, port) ;
SHIPPINGPIER (cargo, pier)

end relation

Unless otherwise specified, a relation is many-to-many (to-many ...). The ideal world
rolationships being modeled by PORTOFCALL and SHIPPINGPIER are both many-to-many.

2Unluie Chen, we do not distinguish belween inter-entity relationships and values of attributes of entities. We believe
thes distinction belongs in the realm of implementation. not specification, being based on the usage of information rather
than the natwre of the information itse!f,

FOR PROCESS SPECIFICATIONS 5

The concept of a key of a relation is familiar in relational data bases, and is important
to capture In a specification. One or more keys for a relation can be specified by a
modifier on the relation declaration. Each key consists of one or more role names.
Another important concept we call covering. A relation covers a role if every object of
that role's type flils that role in at least one tuple in the relation. If a relation covers a
role that is a key of the relation, then every object of that role's type fills the role In

exact!y one tuple in the relation. In this case, we say the relation defines the role.

relation
CAPACITY (ship,volume), defines ship;
CONTAINS (ship,cargo,volume}, key is (ship,cargo);
PIERPORT (pier, port), defines pier, covers port;
SLIPS (pier,slip), defines slip, covers pier;
BERTH((ship,stip), key is ship, slip

end relation

These declarations specify that every ship has a single volume as its CAPACITY, that
ships CONTAIN volumes of cargo, but a given ship has only a single volume of a given
cargo at any time, every pier is in a particular port and every port has at least one
pier, every slip is at a particular pier and every pier has at least one slip, and that
BERTH relates subsets of ships and slips in a one-to-one correspondence. Just as a
role's type restricts the individual tuples in a relation, a retation's keys and coverings
restrict the collection of tuples in the relation.

2.3 Expressions, Patterns, and Predicates

An <expression is a constituent of the language that is used to refer to objects. The
simplest expression is a literal, such as 5000 or Corn, which refers to the same object
wharever it is used in a specification. The referent of a literal is fixed for all time.

A <varlable) is a name that may be used as an expression. The referent of a variable
may change frrm one use to another. Each variable in the language is declared as the
idontifier in . - .:type, and the referent of the variable must always be an instance of
tha type that appeared in its declaration.

Exprassions may be combined by operators and function names, as in a conventional
programming language, to produce other expressions. But any expression, no matter how
complex, is only a means for referring to an object; it does not specify any activity that
changes objects or relationships.

A <(pattern> has the form
<relation identifier>(<expression>l. cons <expression>n)

where the named relation Is n-ary. A pattern marches a tuple if each object filling a role

3" 13 occasionally the case that a role serves as a key for some subtype of its type, but not for the entire type.
Simlarly, a relation may cover a role for some subtype of the role's type. It is possible to succinctly declare key,
covering, and defining roles for a subtype of the role's type, but our examples will not require the capability.

6 A DATABASE FOUNDATION

in the tuple is the referent of the corresponding expression.4 The correspondence Is the
natural positional correspondence between expressions in the pattern and roles in the
relation declaration.

A pattern may be used as a <predicated. The pattern is said to be True, or to hold, In
a particular data state if the named relation contains any tuple that matches the
pattern; otherwise it is said to be False in that state. Also,

<expression> = <expression>

Is a predicate that holds if and only if the expressions have a common referent. Finally,

<expression> isa <type identifier>

holds if the (some) referent of <expression> is an instance of the named type.
Prodicates may be combined with the logical operators A, Vv, =, and => with the traditional
meanings.

Predicates may also be written with quantified variables. VY<id:type> <{predicate>
holds In a given data state if {predicate) holds in that state for every assign:nent of an
existing object of the quantified variable's type to that variable. 3<id:type> <predicate>
holds if there exists any such assignment for which <predicate> holds. For example,

3s: ship, v: volume { CONTAINS (s, Corn, v) A PORTOFCALL (s, Seattle) nv 2 20k-Cubtc-Met¢r:s

holds I there exists some ship bound for Seattle and some volume of Corn of at least
20k-Cubic-Meters on that ship. We say that the predicate holds for the assignment of that
ship and volume to the variables s and v, respectively.

A predicate that would test for the existence of any olltanker bound for Santa Barbara
could be written:

Iship (PORTOFCALL{ship,Santa Barbara) A ship isa olltanker)
or more naturally as
Joiltanker PORTOFCALL (oiltanker, Santa Barbara)

which might hold for several distinct assignments of oiltankers to the variable oiltanker.

English noun phrases are a very rich form of expression. They provide the power to
refor to objects by describing them; i.e., by predicating how they relate to other,
possibly also described, objects: e.g., "a ship containing at least 20000m3 of corn and
bound for Seattle.” Through the use of possessive and reflexive pronouns, the
descriptions can even refer to the object being described: "an employee who manages

4
As we shall see, some evpressions may be non-determirustic, having multiple referents. A pattern matches a tuple
provided the objects in the tuple are among the refercrts of the corresponding expressions.

5 ‘ .
Actually, the predicate - could not be used to compare objects of type volume unless an ordering on volumes was 3
defined. Such orderings are not covered in this report, %

i ikt

TOR PROCESS SPECIFICATIONS

hlmso"."6
expression:

This richness Is available In formalized form through use of the predicate-based

[<id: type> | <predicates]

where (predicated> may use the varlable name in <(id:typed> freely. it
Iid:type> (predicated holds for some assignment of an object to that variable, then
that object is a referent of the expression. Such expressions, like their English
counterparts, may be non-deterministic, having many referents, deterministic, having

axactly one referent, or anomalous, having no referents.7 Formally, "a ship containing at
loast ?OOOOm3 of corn and bound for Seattle" is expressed:

[s:ship]CONTAINS(s5,Corn [v:volume|v> 20k-Cubic-Meters]) A PORTOFCALL(s,Seattle)] (1)

The expression [<id:type>|True], which refers to any instance of some type, may be
abbreviated as [<type identifier>]). It is common for such expressions to appear in a
pattern with the type identifier naming the type of the role in which the expression
appears. in that case, the expression may simply be written as the symbol $. Thus,

PORTOFCALL (loiltanker) , Santa Barbara)

will match tuples in the PORTOFCALL relation having Santa Barbara in the port role and
any oiltanker In the ship role.8 The more: general pattern

PORTOFCALL([shipl, Santa Barbara)
would allow a match for any ship, not just an oiltanker, and could be written simply as:

PORTOFCALL (8, Santa Barbara)

It Is also common to find predicate-based expressions in which all uses of the
distinguished variable In the predicate are in roles of the same type as the variable. in
this case the predicate itself, written with the symbol * replacing the variable, may be
usod as an expression. For instance,

CONTAINS (s, Corn, {v: volumelv250tons)) A PORTOFCALL (s, Seattle)

is equivalent to (1) above.

] " -
The noun phrase also derives power from its informality. While we sometimes use a fairly explicit verb to indicate a
relation -- "the captain serving on the ship® -~ it is more common to condense the relation to a vague preposition -- “the
capfan of the ship® -~ or to simply provide a symactic indication that some relationship exists -- “the ship's captain.”

7The coliection of referents depends on the collection of tuples in the data base, and on the objects assigned to any
variables used freely within the predicate.

81hs is distinet from the pattern PORTOFCALL(oiltanker,Santa Barbara), which uses oiltanker fresly. This pattern
would only maich the tuple for the specific oiltanker that was the referent of oiltanker.

A DATABASE FOUNDATION

2.4 Constraints

We have seen how role types and relation keys serve to constrain the tuples and
tuple collections that can coexist in a relation. There may also be constraints in the
Ideal world which correspond to tuples and collections of tuples that may not coexist in
the data base as a whole. A declaration of the form:

constraint <predicate>; ... <predicate> end constraint

outlaws any data state in which any of the predicates holds. The constraint

constraint Joiltanker PORTOFCALL (oiltanker,Santa Barbara) end constraint

prohibits any oiltanker from ever having Santa Barbara as a destination. A second
constraint,

constraint 3s:ship(CONTAINS(s, [fuell,8) A CONTAINS(s, [grain],$)) end constraint

. prohibits the mixing of fuel with grain in a ship at any one time. Thus, for instance, a ship
could not contain both Oi!/ and Corn.

The essential "meaning"” of the CAPACITY relation comes from its appearance in a
constraint:

constraint 33:ship(z {CONTAINS (5,8,%)} > CAPACITY(s,%)) end constraint

which prohibits the sum of volumes of various cargos contained in a ship from exceeding
the capacity of the ship.

Constraints restrict the data states that a process may legitimately create. They
play a far more central role In the specification language than they do in database
lanquages. That role Is described in section 3.7 below.

2.5 Derived Relationships

it Is convenient to be able to refer to relationships that are derived from others. For
instance, a port "handles" 0il if it has a pier at which Oi/ can be loaded and unloaded. It
is important to be able to define the "handles" relation in such terms and to use it in
patterns in the same way as any other relation. It is unacceptable for the relationship to
be glven an independent definition and manipulated by the specified process in such a
way as to explicitly maintain its invariant connection to other relations. This invariant
should be declared explicitly and its maintenance ensured by that declaration.

These invarlants are defined by giving the relation a normal declaration, including roles
and keys, and using it in a derlvation as well,

derivation
<derivation name>(<id:tgpe>1.....<id=tgpe>n)
antecedent <predicate>
consoquent <pattern> 3

end derivation

T

FON PROCESS SPECIFICATIONS o

In any process state for which
! 3<id:tgpe>1.....<id:tgpe>n <predicate>

holds for some assignment to the variables (Id:type),, the tuple corresponding to
<{pattorn> for that assignment Is taken as being implicit In the data base. No distinction
is made in the language between implicit and explicit relationships.9

he only variables that may appear freely in Cpredicated> or <{pattern> are the
(ld:type).. Each expression in {pattern> must be deterministic. This ensures that the

tuple corresponding to <pattern> for any particular assignment to the variables is well
dofinod.

Derivations can be used to define the relationships

- A ship is moored at a pler.
- A ship is in a port.

- A port handles a cargo.

refation MOORAGE (ship, pier), key is ship;
INPORT (ship, port), key is ship;
HANDLES (port, cargo)

end relation

derivation

b DMOOR (ship, pier,slip)
antecedent BERTH(ship,slip) A SLIPS(pier,slip)
consequent MOORAGE (ship, pier);

DINP (ship, port, pier)
antecedent MOORAGE (ship, pier) n PIERPORT (pier, port)
consequent INPORTship, port);

DHAND (cargo, port, pier)
antecedent SHIPPINGPIER (cargo, pier) A PIERPORT (pier, port)
consequent HANDLES (port,cargo)

end derivation

Note that MOORAGE is given a derivation in terms of BERTH and SLIPS, and is itself
used in the derivation of INPORT. [t is acceptable for a relation to be given several
independent derivations. The existence of a derivation rule for a relation does not
prohibit the direct insertion of tuples in that relation by the specification. For instance,
when arriving at a port, there may be a time when the INPORT relationship holds for that
ship before it ever is positioned in a slip at a pler.

QTM only exception to this concerns deletion of tuples. Any attempt to delete a tuple that would still exist implicitly
following the deletion 13 considered anomalous.

10 A DATABASE FOUNDATION

3. SPECIFYING THE DYNAMICS OF A PROCESS

The purposec of writing a specification is to describe formally the behavior that takes
\ place in the idcal world. The essence of this behavior is the sequential change in the
collection of objects and associations. A specification language (statement> is used to
define a transition from one such state to another. The transitions are ultimately
composed of five baslc data transitions:

- Object Creation -- Seldom are the literal objects named in the static
domain model the only objects that exist in the ideal world. New piers,
ships, and even ports may come into existence as part of the process. The
creation of a new object Is specified by the statement:

credate <type>
This specifies the creation of an entirely new instance of (type>, distinct

from all objects currently (or previously) existing.

- Object Destruction -- The ideal world need not be cumulative. Sometimes
objects cease to exist. The statement

destroy <expression>

specifies the destruction of {expressiond's referent and of all tuples In
which that referent appears.

- Tuple Insertion -- New associations are created by the statement:

insert <pattern>
which will add to the data base a new tuple matching <(pattern>. If the
tuple to be added already holds, the insert operation causes no change.

- Tuple Deletion -- Assoclations are removed by the statement:

delete <pattern>

which will remove from the data base a tuple matching <pattern>. If no
tuple in the database matches (pattern)>, the delete operation causes no
change.

Tuple Update -- A change of the object filling a particular role in a tuple Is
speclified by:

update <role-name> in <pattern> to <expression>

which changes the object filling the indicated role In some tuple in the
database matching <{pattern> to the referent of <expression>. More
precisely, the semantics of update are those of a delete followed by an

FOR PROCESS SPECIFICATIONS

lnsort.10 treated as a single database change. The symbol oldvalue may
be used in Cexpraession) to reference the object originally tilling the role
being updated.

All of thesa statements, with the exception of create, may be non-deterministic. That
is, due to the appearance of non-deterministic expressions within the statements, there
may be distinct changes to the data base, each of which meets the semantic
requirements of the statement. It Is occasionally desirable to make a change involving
not just one of the objects specified non-deterministically, but all of them. This can be

specified with statements destroyall, insertall, deleteall, and ugdateall.11 Thus, the
salary of every officer could be increased by 5 percent via:

updateall salary in SAL((officer},8) to 1.85woldvalue

3.1 Control Structures

To specify a process, it must be possible to state under what conditions and in what
order various data transitions take place. Centrol structures are the means for
accomplishing this. The control structures available in most high-level programming
lanquaqges are also useful in specifications. In this report, the only unconventional
control structure introduced is the demen (see section 3.4). Otherwise, we will confine
ourselves to sequencing, conditionals, and iteration.

Sequencing is indicated by separating successive ¢statement>s by semicolons:
<gtatement>: ... <statement>

To meet the syntactic requirements of the language, it is often necessary to bracket
a sequence of (statement>s so that it may be used as a single (statement):

begin<statement>; ... <statement> end

In mathematics, we are familiar with problem descriptions that include statements such
as "Let x, y, and z be numbers such that P(x,y,z). Then .." This provides a way ot
introducing some new names, specifying, or restricting, the values to which they refer,
and then using those names in further statements. This facility Is provided for with the
syntax:

heqin
3<id: type>,...,<id: type> <predicate>;
<statement>; ... <statement>

end

If <predicate> holds for some assignment to the variables, then the variable environment

'orh-s grves update a meaming both when no fuple maiches (pattern® and when the altered tuple 13 identical to an
evishing one. :

"

These are not simply iterations making a single transihion on each loop, but are primitive transitions, as described in
section 3.6,

— - PR . - . - @ e e e v cpt— I e L R

12 A DATABASE FOUNDATION

In effect outside this block Is extended accordingly. The (statement)s are then
executed sequentially in the extended environment. Since the <predicate> may be true
for many distinct extensions, the block may be non-deterministic. If there Is no

assignment satisfying {predicate), the block is ¢|nomalous.12

(.‘om{irionalily is expressed by a {(statement) with the conventional syntax:

if <predicate> {then <statement>1| lel se <statement>2|

which has the meaning of (statement), if <predicate> hoids and of <statement)2
otharwise. A conditional ¢expression) is specified analogously:

it <predicate> then <enpresfsion>1 else <expression>2

Another useful capability is to have a conditional ¢(statement> in which the predicate
contains existentially quantified variables, permitting the "then" clause to refer to the
assignment that satisfied the predicate. In a conditional (statement> or ¢expression)
having a predicate of the form:

J<variables,...,<variable> <predicate>

the varlable environment surrounding the conditional is extended for the "then" clause to
incorporate the portion of the assignment satisfying the predicate for the existentially
quantified variables. The variable environment for the "else" clause is that in effect
around the conditional itself. For example, the formal representation of "if there Is a ship

in Santa Barbara containing 20000m3 of grain, schedule it to stop in Seattle" Is:
if Jship (INPORT (ship, Santa Barbara) A

CONTAINS (ship, [grain], [v: volumelv 2 20k-Cubic-Meters)))
then insert PORTOFCALL(ship, Seattle)

Finally, a simple but power? il form of iteration consists of dolng the same activity in
cvery variable assignment for which some predicate holds:

vharnver <predicate> do <statements»

specifies doing <(statement In cvery extended assignment for which <predicate> holds.
The coxtensions are determined, as in the case of conditionals, by the leading
existentially quantified variables on (predicate). The order of assignments in which
<{statement> is to be done is non-deterministic. All are calculated with respect to the
data state existing prior to the initiation of the iteration; the effects of (statement) in
B one environment have no bearing on the collection of assignments used. The example

above may be rewritten to send all ships with 20000m3 of grain to Seattie:

nherovoer
3shi p (INPORT (ship, Santa Barbara) -
CONTAINS (5hip, (grain), [v:volume!v 2 20k-Cubic-Metersl))
do incert PORTOFCALLI(ship, Seartle) ;

1
20"0 of the powers of English 1s that o rarely forces us to introduce "variable” names Iike x, Yy, and Z. Unfortunately,
that power appears to derve n large part from the informal aspect of the language.

fOR PROCCSS SPECIFICATIONS

3.2 Actions

The basic specifier-defined building hlocks of a specification are actions. They are the
analog of procedures in a program. An action Is a parameterized <{statement> that
expresses some data transition, or sequence of transitions, in terms of its parameters.
The <statement), or definition, specifies the transition(s) through the use of the primitive
dntabase operations and invocations of other actions. An action is declared by:

action
<action identifier> (<formal parameter> ... <formal parameter>),
definition <statement>;

end action

The <action identifier) provides a name for the action. Each <{formal parameter) Is
simply an <id:type>. The variable environment for (statement) consists of the <(formal
parameterds, with an assignment in which each parameter refers to the object used as
the corresponding actual parameter in an invocation.

An invocation is denoted by:

e i

<action identifier>{<expression>, ..., <expression>)

with the usual positional correspondence of {expression>s in the invocation to the
parameters of the action. The referents of the <{expression>s in the invocation
environment become the referents of the corresponding parameters of the action within ;
Its definition. If any of the <expression>s is anomalous, then the invocation Is

anomalous.

Example

One activity in shipping is the loading of a given volume of some cargo onto a ship.
This action would be declared by:

action
LOADSHIP(ship,cargo,incr: volumel ,
definition
it CONTAINS(ship,cargo,8) then
update volume in CONTAINS (ship,cargo,$) to oldvaluesincr i
else insert CONTAINS(ship,cargo,incr)

end action

The definition of LOADSHIP Is simply to increment the volume of cargo contained by ship
by an amount incr, or to insert a new CONTAINS tuple If sAip did not contain any cargo

ym.ia

By specitying a default volume for CONTAINS to ba a literal Ovolume (the additive identity tor volumes), the
conditional could be replaced by its "then" clause. Dufaults sre not discussed in this report, dbut are a valuable
specification mechanism. Also, the operator + could not he used with objects of type volume uniess given a suitadble)
defintion in the specification, : 3

14 A DATABASE FOUNDATION

Another activity is the movement of a ship to a pier, which must happen when the ship
is to ba loaded or unloaded. We shall declare the action by:

action
MOVESHIP (ship, pier) ,
definition
if MOORAGE (ship, pier) then
comment no movement needed end comment else
update slip in BERTH(sAip,8) to SLIPS(pier,v)

end action

If the ship is already at the specified pier, then MOVESHIP does nothing. Otherwise, it
updates the BERTH tuple for the ship to indicate that it is at some slip at the desired
pleor. This slip is specified with the non-deterministic pattern expression SLIPS(pier.").

3.3 Pracedural Requirements

In the ideal world, there is not only regularity in the state of data relationships, but in
the realm of processing as well. The regularity in the types of objects on which a given
action is performed is captured by the typing of the formal parameters of an action. At
any point in a process, it may be the case that the data and variable assignments must
satisfy some predicate for the execution to be feasible. This can be specified by
including <requirement)>s at appropriate points in the control structure:

require <predicate>

A require declaration can appear wherever a statement can appear. It signifies that the
prodicate must be true at the point in execution where it appears.

Two common points to include {requirement>s in a specification are at the initiation
and completion of actions. These have been singled out syntactically and may be

doclared as preconditions and postconditions of an action, rather than included within the

action's deﬂnmon.“l

it Is sometimes desirable to state a requirement on the transition achieved by an
action, rather than (or in addition to) requirements on the initial and final states. This
can be done with a syntactic means in the postcondition. Any expression or predicate In
a postcondition preceded by the marker old refers to Its value or truth in the data state

at action initiation, rather than termlnatlon.15

Example

Suppose the action MOVESHIP defined above can, in the ideal world, only be used to
move a ship to a pler it the ship is already in the port containing that pler. This fact is

a
! Preconditions and postconditions may refer to the action's operands by using the formal parameter names as free
variables

1!’!u-cmm 3.5 describes a more general facility for reference to past data states.

FOR PROCLSS SPECIFICATIONS 15

captured by placing a precondition on the action:

action
MOVESHIP (ship, pier),
precondition INPORT (ship, PIERPORT (pier,+)),
definition ...
end action

Tho requirement that cargo can only be loaded onto a ship if it is moored at a pier
which handies that cargo can be captured by a precondition on the action LOADSHIP:

action
LOADSHIP(ship,cargo,incr: volumel,
precondition Jpier SHIPPINGPIER(cargo, pier) A MOORAGE (ship, pier) ,
definition ...
end action

Occasionally it Is necessary for a port to deal with a new class of cargo. This may
necessitate a major shakeup in the assignment of cargos to piers in that port. The
action that makes the necessary changes might need to take many factors into account,
and might well be expressed best with some non-determinism, since several
reassignments might be equally acceptable. However, it might be absolutely
unacceptable to deassign a Natural Gas pier (due to excessive costs or government
requiations). Also, the reassignment must still leave all originally handled cargos still
handled, though not necessarily at the same pier.

action
ADDCARGO (cargo, port},
precondition -~ HANDLES (port,cargo),
definition .., ,
postcondition Vpier(old SHIPPINGPIER(Natural Gas, pier) =>
SHIPPINGPIER (Natural Gas, pier))
posteondition Yeargolold HANDLES (port,cargo) => HANDLES (port,cargo))

end action

3.4 Data Triggered Processing

In describing a process, It Is convenient to be able to make statements of the form
"whenever <trigger> is the case, do {responsed>". <(trigger> is some condition on the
objects being manipulated by the process and, perhaps, on the control state' of the
procoss as well. C(response) is itself a process to be performed when that condition is
mot.

Sinco all information about the objects Is captured in the data base, the predicate
lanquage provides a natural formalism for expressing those triggering conditions
dependent on object associations and types.

Such demons have been permitted in various Al languages [4, 5]. Since these are
programming languages, rather than specification languages, they have severely
rostricted the expressive power permitied In the trigger condition. As a result,

ié A DATABASE FOUNDATION

computations triggered by complex conditions have to be “programmed" in these
lanquages, spreading pleces of the condition throughout the program. In a specification,
however, the full power of the predicate language, including typed variables, logical
operators, and quantification, can be permitted in the trigger without sacrificing any
dasirable specification properties.

Syntactically, <demon>s may be declared:

demon
<demon identifier>(<demon parameter> ... <demon parameter>),

trigger <predicate>,
response <statement>;

end demang

The <demon identifer> becomes the name of the demon. Each <demon parameter> is an
Cid:type>. A demon specifies that whenever a single database transition leaves a state
in which the predicate holds with respect to some assignment to the demon parameters,
and the predicate did not hold for that assignment In the pre-transition state, then
<(statement)d Is to be executed, in the post-transition state, for that assignment. A
single transition may trigger several demons, and may trigger a single demon with several
assignments. In this case, all such demons are to have their responses performed for all
asslgnments, but the order in which this is to happen is non-deterministic.

On occaslon, the triggering condition for a demon can be described best in terms of a
transition, rather than in terms of a state, e.g., "if the price of any commodity jumps by
over 7 percent, .." To express such demons, the symbol old may be used lexically
within the trigger in the same way as in a postcondition (see section 3.3).

Example

Suppose the shipping system receives periodic updates on the progress of ships at
soa, In the form of latitude and longitude readings and compass headings. Suppose it
also racelves periodic reports on weather conditions at various locations. Finally,
suppose it is capable of sending messages to ships. To support this in the specification,
the domain model could include:

tupe
weather, « (Clear,Stormyl;
heading, = integer in range (0,360);
shiploc

end type:

relation

WEATHERSTATUS (shiploc, weather), key is shiplocs
SHIPPOS (ship, shiploc, heading), key is ship, shiplocs
COORDINATES (shiploc, latitude, longitude) ,

defines shiploc, key is (latitude,longitude)

end relation:

action

fOR PROCESS SPECIFICATIONS 17

BROADCAST (ship, message} . dafinition ...
end action;

A demon can specify that a warning is to be sent to any ship approaching a stormy
weather area. The concept of "approaching” must of course be formally specified. The
dotalls of this are really orthogonal to the issues of data-triggered processes; the formal
specification would define a many-to-many relation APPROACHING(ship,shiploc) and a
dorivation rule defining APPROACHING In terms of ship's latitude, longitude, and heading
<= lLe., In terms of SHIPPOS and COORDINATES. The demon, which we name
STORMWARNING, is defined by:

demon
~ STORMWARNING (ship, shiploc) ,
trigger WEATHERSTATUS (shiploc, Stormy) n APPROACHING (ship, shiploc) ,
response BROADCAST (ship, "storm at latitude " @ COORDINATES (shiploc, v, $)
@ " longitude " @ COORD'NATES(:hiploc,S.fc))

end demon:16

The trigger of this demon involves two relations, APPROACHING and
WEATHERSTATUS, which change as the process executes. It is important to both the
reliability and maintainability of a specification that this behavior be stated as a
cohesive unit, rather than distributed in the various places In the process where it comes
into play.

3.5 Tempora) Reference

As a process executes, information is being produced and consumed. In writing a
program to perform the process, a programmer must be concerned with the storage
space required to hold this information. Programs manifest this concern by using
compact or implicit representations of information, by representing only that information
essential to correct execution, and, most pervasively, by releasing space used to store

information that is no longer needed.' 7 In a specification language, however, there is no
reason to be concerned with storage space as a finite resource. As a process
executes, the current collection of objects and associations changes, to be sure. But
the history of execution and database states is conceptually well defined, In the sense
that expressions and predicates can be assigned natural meanings with respect to past

times, as well as with respect to the current state.‘8 The primitive database operations
destroy, delete, and update are not destructive operations but, like insert and create,

alter the collection of current objects and/or associations.

1 R .
6",, operator @ is being used for string concatenation, converting numbers 1o strings when applied to numerical
arguments,

‘7Ptoq¢.1mmmq languages nclude facilities, such as block structure and garbage collection, which help the programmer
deal with s storage allocation problem. More importantly, as we shall see, programming languages simply do not
provide certain rich constructs, whose counterparis are avaifable in natural language, that would make the storage
allocation problem too difficult for current compiler capabililies,

‘afhe execution of an action that changes a previous ¢tate is not well detined, however; we leave research in this
srea to the producers of Star Trek and adherents to certain political ideologies.

18 A DATABASE FOUNDATION

In English, we commonly use expressions like "the President at the end of the Civil
War" and "If the car was insured at the time of the accident ...". Syntactically,

<expression> at <temporal reference>
<expression> [before | after] <transition reference>

aro themselves <¢expression)>s, whose values are the objects described by (expression>
in the referenced state. Similarly,

<predicate> at <temporal reference>
<prodicate> [before | after] <transition reference>

are themsclves {predicate>s. A <{temporal reference> specifies a past state of the

data hase, and implicitly the execution history preceding and following that state.19 it
does not Indicate a lexical point in the specification, and thus does not provide access to
previous bindings of specification variables. A <{transition reference> specifies a
particular data transition in the process history, and thus the before and after states of
that transition.

The value of temporal reference in a specification is that it enables data reference to
be localized at the point where the data is needed. In a language permitting reference
to current data only, it becomes necessary to introduce auxiliary concepts, which have
no analog In the Ideal world, to drag Aistorical information through the execution so that it
will be current information at the point of consumption. The existence of a global data
base, changing in discrete steps and representing information in a format independent of
variabla bindings, provides the opportunity to incorporate temporal reference cleanly into
the specification language.

Example

When filling a customer's order, a bill must be sent indicating the cost for that order.
Suppose that cost Is (in part) a function of the market price of the cargo when the order
was placed, which may differ from the market price at billing time. If cargo and order refer
to a particular cargo and order, respectively, then the expression

MARKETPRICE (cargo,) before creationlorder)

specifios the price of the cargo at the time the order was created.zo

19 h . , .
This permils temporal references to be built up in expression-like fashion.

”
‘orho various forms for Ctemporal referenceds and Ciransition reference>s, such as creation(<exnression>), have not
yet been delineated. The forms appearing here are only meant to be suggestive of actual capabilities and syntax.

FOR PROCESS SPECIFICATIONS 19

3.6 Pracess Granularity

The domain model of typed objects and associations has a “natural" processing
qranularity. The primitive transitions at this level are insert, delete, update, create, and
destroy. The ideal process being specified, however, may have a coarser granularity.
That is, some conceptually indivisible state transition in the ideal can only be described
in terms of multiple primitive transitions.

Others have recognized that the granularity differences affect the checking of
inteqrity constraints in database management systems. While it is desirable to state the
inteqrity constraints In terms of states of the ideal process, they may be violated in the
spurious intermediate states that exist as the database changes from the
representation of one ideal state to another. Suppose, for example, that ship's officers
in the Iideal process could be reassigned on occasion to new posts, with their salaries
changing as part of the reassignment activity. Suppose, furthermore, that a salary floor
exlists for captains. The finer grain of the data base can only represent a reassignment
as a sequence of primitive operations. If the reassignment Is specified by a (update
post; update salary) sequence, however, the salary floor constraint may be violated
temporarily when an officer is being upgraded to captain. The other order might violate
the constraint when an officer was being demoted, or retired, and his salary reduced.
The resolution of this problem proposed in database systems is to introduce the concept
of a rransaction, or structured operation, to capture the granularity of the ideal process, and
to have the system guarantee the integrity of the data base only on completion of these
transactions, but not within them.

The same Issue must be faced in the specification language because the domain
constraints and demon triggers are naturally defined with respect to states of the ideal
process. But even In the absence of constraints and demons in a specification, it Is
Important to capture the granularity of the ideal process in the specified process. The
primary rcason for this is the enhancement of maintainability. Adding a new constraint or
demon to a specification with the wrong granularity will not yield the desired new
specification. Furthermore, specification by reference to past states of a process (see
section 3.5) cannot be done naturally if the specified granularity is not matched to the
ideal.

Rather than indicating when (particular) constraints and demons are to be checked,
the spocifier should define indivisible database transitions matching the granularity in the
Idoal process. The resulting specification will define a process having no spurious
intermaodiate states. The construction:

atomic <statement>1: <statement>2: <5tatement>n end atomic

defines an indivisible "macro" database transition as the composite of the transitions
defined by the <statement)l. which may range from primitive database operations to

complex control structures specifying, perhaps conditionally, database transitions. The
new transition defined by the block can be decomposed into the unordered collection of

20 A DATABASE FOUNDATION

primitive transitions so speclfled.‘?1 Since no intermediate states exist, all database
conditionality in (statement)I is based on the state existing at the start of the atomic

block, and is independent of the partial transition specified by <statement>1. ery
(statement>, .. In general, this makes it easier to specity macro transitions, since it Is

not nccessary to give temporary names to information about the initial state that may be
necdad to compute the transition, but is being destroyed by the transition.

Example

Suppose the data base includes the assignment of officers to ships, and the salaries
of these officers:

type assignment; officer; salary, = integer in range[I0000,40000];
position, > {Captain, Firstmate)

end type;

relation
SAL(of ficer,salary), defines of ficer;
POST (assignment, position, ship), defines assignment;
FILLS (assignment,of ficer) ,key is assignment,of ficer
end relation

A type captain could be defined as an officer filling the position Captain on any ship. A
constraint can declare the lower bound on the salaries of captains.

type
captain, = {[o:officer!Ja: assignment FILLS(a,0) A PCST(a,Captain,$)1}

end tuype
constraint SAL({captain]l,w) < /5000 end constraint

An officer o could be transferred to a new assignment a by the action REASSIGN, which
delotes the FILLS tuple indicating the previous officer filling ¢, updates the FILLS tuple
for o to indicate o's new assignment, and updates the SAL tuple for o to indicate a new
salary, which is some function FN of o's previous salary and the salary of the previous
officer filling a.

action
REASSIGN(o:officer, asassignment), definition
atomic
delete FILLS(a,$);
update assignment in FILLS{8$,0) to a:
update salary in SAL(0o,8) to FN(oldvalue, SAL(FILLS (a,s},w))
end atomic
end action

The dofinition of REASSIGN Is an atomic tiansition. The order of the three statements
within that dofinition is immaterial. Constraints, such as the salary floor for captains,
must not be violated in the state resulting from the transition. Because this is an atomic
transition, the argument to FN is the salary of the previous officer filling a.

1
2 This collection must satisfy certain well-formedness conditions to make sense. For example, it cannot include both
nsertion of 8 new association involving an object and destruction of that object.

FOR PROCESS SPECIFICATIONS 21

It may be argued that the latter effect could be achieved even if the intermediate
states did exist, either by rearranging the order of operations in REASSIGN or by saving
the salary of the previous officer in a temporary. There are good reasons not to
introduce such implementations of the transition into the specification. This is obvious if
a somewhat more realistic situation is considered. In general, several officers may be
roassigned or retired in a single transition in the ideal world. To achieve this as a
sequence of state transitions would require either a sophisticated ordering of the
individual reassignments or saving (potentially large amounts of) temporary data to
overcome the interdependencies of the salaries. Either of these methods would obscure
considarably the specification of a data transition composed of a collection of simpler
transitions, each dependent only on the initial data state. The atomic construction
pormits a straightforward, and, thus, less error-prone, specification.

3.7 Constraints and Non-Determinism

The many forms of declarative information introduced in the preceding sections have
been constraining In nature. They serve to categorize certain database states, or state
transitions, or processing sequences as anomalous. The function of constraints in data
management systems has been seen to he that of guaranteeing the integrity of the
stored data [10, 11]. Any attempt to violate a constraint results in re jection of the data-
base operation that would cause the violation (or, in some simple cases, a correction of
the offending value).

This use of constraints has two benefits. Obviously It provides a great deal of
protection to users, whether luman or software, of the data. Furthermore, it opens up
the potential for achieving considerable efficiency in a compilation process, through the
choice of both data structures and algorithms tallored to the constrained data and
constrained use thereof.

However, this use of constraints relegates them to an essentially redundant role in
specHication. That Is, in the best of all possible worlds, all constraints would in fact be
implicd by the process specification and input restrictions alone.22 In other words, if
Inputs to a valid implementation of our ship system were appropriate, there would be no
exccution that would ever "attempt® to overload a ship, and thus the capacity constraint
wotlld be implicit in the specification.

If we look at natural language, however, we find constraints playing a more active
role. It is reasonable to say "choose a ship bound for Seattle and load 5000 tons af

corn onto iI1." It “goes without saying” that the non-deterministically described shlp23
should have 5000 tons of spare capacity, and should not contain any Oil or Natural Gas,

zzhnhouqh 1t might be very difficult to express certan consiraints in terms of constraints on input.

?37hrouohou! this section, non-determimism 18 being lreated only as a way of indicating a range of alternatives, any ot
which 1s acceptabte. An implementation of the specificalion is free to behave in any of the acceptable ways, ot in
different acceptable ways at different times, but need not cover all the alternatives or distribute its behavior among them
wn any particular manner.

nare

22 A DATABASE FOUNDATION

since these cannot be combined with Corn. In reality, it just "goes without resaying."
Having stated the constraints, it is unnecessary in English to refine every descriptive
reference to the point where the only objects satisfying the description are those
auaranteed to be “valid" in the usage context.

Likewise, it Is undesirable to sprinkle predicates throughout a specification solely for
the purpose of avoiding a conflict between the declared constraints and the specified
processing. To do so would destroy the locality of the constraint declaration, not to

moention the great burden it places on the specifier.24 Rather, the constraints should
affeoct the semantics of the remainder of the specification.

Informally, this is accomplished by viewing the alternatives available for any
non-deterministic construct in the specification as being limited not only to alternatives

meeting the local requirements of the construct, hut to alternatives permitting the

process to be completed without violation of any constraint.25

More formally, possible executions of a specification containing non-deterministic
constructs can be viewed as forming a tree, with branches corresponding to alternative
continuations of the process (disregarding constraints). The paths leading from the root
of the tree to certain nodes may necessarily violate constraints or use anomalous
statements in reaching that node. Label all such nodes anomalous. Then

1. Prune away all subtrees below nodes labeled anomalous.

2. If every leaf of a subtree Is labeled anomalous, label the root of the
subtrce anomalous.

Repeat steps 1 and 2 until no more nodes can be labeled. Then prune away each
remaining anomalous node and the branch linking it to its parent. If no tree remains, i.e,,
the root gets labeled anomalous, then the specification is inconsistent. Otherwise, the
remaining tree represents the subset of executions actually permitted (specified),
taking constraints into account. It is entirely possible, and highly likely in the envisioned
usaqe, that locally non-deterministic constructs turn out to be entirely deterministic
when constraints are considered.

Non-determinism comes into a specification in several forms. Predicates formed from
pattorns with unassigned variables used freely are frequently non-deterministic, as are
pattern-based expressions. It is also possible to write expressions for "any" element of
n sot, to express iteration over elements of a set In a non-deterministic (including
arbitrary) order, and to express a collection of distinct statements as alternative
continuations of a process.

A . .
2 Programmers are of course famliar with this burden, for they are ganerally required 1o "compil® in" constraints when
they write a program.

[.
2 Fhe use of constraint here 1s to be taken, very generally, to inciude not only those constraints declared in the

specification but also the use of anomalous statements and the universal constraints on well-formed manipulations of the
data base; .9, “thou shalt not create and destroy the same object in a primitive transition.”

maintaining locality of information in a specification. Where true non-determinism exists
in the idecal world, it is important to capture the full range of acceptable alternatives in
the specification, so as not to unwittingly rule out efficient implementations by
overconstraining.

1
FOR PROCESS SPECIFICATIONS 23
Local non-determinism, constrained away by global considerations, is useful for
Example

An action that would load a given volume of some cargo from one port onto any
avaliable ship bound for another specified port could be defined by:

action
LOAD (cargo, volume, port.1, port.2},
definition
begin
Jship PORTOFCALL(ship, port.2);
MOVESHIP (sAip, PIERPORT (x, port.l);
LOADSHIP (ship,cargo, volume) i
end !
end action

e

The definition of LOAD is a block that assigns to its local variable ship a ship having
porr 2 as a port of call. Then the action MOVESHIP is to be performed on that ship, !
positioning it as some pier in port.l. Finally, the cargo is actually loaded onto the ship. {

MOVESHIP was defined earlier as:

action
MOVESHIP (ship, pier),
precondition INPORT (ship, PIERPORT (pier, %)) , !
definition
if MOORAGE (ship, pier) then
comment no movement needed end comment else
update slip in BERTH(ship,8) to SLIPS(pier,x)

end action

Considerable use has been made of the interaction between constraints and
non-determinism. The predicate used to assign ship required only that the ship be bound
for port.2. The precondition of MOVESHIP ensures that only ships in port.] can be
considered, since the ship is to be moved to a pler in portl. The capacity and
incompatible cargo constraints, which could be violated by LOADSHIP, further restrict the
choice of ships.

The pier specified in the invocation of MOVESHIP is also non-deterministically
specified to be any pier in port.l. However, since the pier selected will be the moorage
of the ship when LOADSHIP is performed, the precondition of LOADSHIP ensures that
only a pler capable of handling cargo will be selected.

Finally, within MOVESHIP, the slip selecied (in the case that the ship really needs to
be moved), is constrained locally only to being any slip at the pier to which the ship is
boing moved. However, since ships cannot share a slip (BERTH is a 1-1 relation), only
empty slips will be considered.

LT g MR o sy

24 A DATABASE FOUNDATION

As a result, the constraints semantically "compile themselves" into the specification,
restricting the ship, pier, and slip that must be fixed for the loading operation. A given
invocation of LOADSHIP may be non-deterministic, deterministic, or even anomalous.

1.8 Anomaly Control

We qive verbal recognition to the potential anomaly of a statement in English by
embedding it in phrases such as "Try ..", or ".., if possible." This same capability

belongs in specifications, for the alternatives are intolerable.26 This situation is distinct
from that in which a collection of equally acceptable statements is specified. Contrast
"Buy four artichokes if you can; otherwise buy two pounds of peas" with "Buy either four
artichokes or two pounds of peas." In a specification, the recognition of potential
anomaly is dealt with by the construction:

attempt <statement>1; <statement>2:... <statement>_ end

which has the semantics of the first (statement)' which Is not anomalous.

4. CONCLUSION

This report has focused on those aspects of a formal process specification language
that rely heavily on concepts developed out of Codd's original work with relational data
bases. There are a number of other aspects to the language that embody the principles
outlined in [2].

A qood specification language, however, will not eliminate the difficulties in software
dovelopmaent. It will simplify the mapping from "ideal world" to formal statement, and will
ease the task of reflecting changes to the conception of that world in its formal
counterpart. Two steps remain In the path to useful computer software.

First, a spocification, as presented in this report, defines a closed world of activity
rosponding to and altering information. It is necessary to split this closed world into a
software component and an environment to adequately specify what is to be implemented.

Second, the mapping from a specification in a language such as this to a program of
accoptable efficiency will rarely fall within the competence of existing, or even
reasonably foresceable, compilers. Human insight remains necessary. One approach Is
to require a programmer to relate his program to the specification in such a way that a

2

r‘ﬂns 1$ & very ditficult problem in programming. If the conditions making an activity anomalous can be tested at’
sitficiontly low cost, & programmer will simply embed the aclivity n a conditional, essentially hand compiling the
cancrants. When the test 1s 1oo expensive, or the programmer cannot svon determine what an adequate test is, he must
resort 1o unconventional control mechanisms, fike error handling or backtracking.

fOR PROCLSS SPECIFICATIONS 25

Boap i

e

computer, perhaps with his aid, can verify its validity [17]. Another approach is for the
programmer to develop the implementation by sequentially transforming the specification
into an acceptable program, with each step in the transformation sequence being
verified (or unverifiable assumptions recorded) [3].

Not all the richness of the specification language comes from constructions that
prohibit efficient automatic compilation, however. Many of the uses of patterns, type
hicrarchies, and typed variables appear to border on, or fall within, the capacity of
current compiler technology. Data management languages are an ideal testing ground for
thosn ideas, and we feel that their introduction would be of great benefit to users of
such lanquaqes.

Formally specifying a large system cannot be made an easy task, no matter how rich
or natural a language we provide. Mechsnical aids to the creation of formal
specifications, particularly ones permitting use of some of the power of informality in
natural language [1], should help, but uitimately the creation of good specifications is an
art. For, among other things, a good specification lends itself to simple maintenance. It
is the Insight and anticipation of the human who creates a specification that gives It this
proporty.

et ey A AR T T -y Y

L

27

REFERENCES

1. Balzer, R., N. Goldman, and D. Wile, "Informality in program specifications," /EEE
Transactions on Software Engincering SE-4 (2), March 1978, 84-103.

2. Balzer, R., and N. Goldman, "Principles of good software specification and thelr
Implications for specification languages,” in Specification of Reliable Software,
pp. 58-67, IEEE Computer Society, 1979.

3. Balzer, R, Transformational Implementation: An Example, USC/Information Sclences
Institute, RR-79-79, 1979,

4. ' Bobrow, D., and B. Raphael, "New programming languages for artificlal intelligence
research," ACM Computing Surveys 6 (3), September 1974, 153-174.

5. Bobrow, D., and T. Winograd, "An overview of KRL, a knowledge representation
tanguage," Cognitive Science 1 (1), January 1977, 3-486.

6. Burstall, R., and J. Goguen, "Putting theories together to make specifications," In
Fifth International Conference on Artificial Intelligence, pp. 1045-1058, August
1977.

7. Chen, P., "The entity-relationship model -- Toward a unified view of data," ACM
Transactions on Database Systems 1 (1), March 1976, 9-36.

8. Codd, E. F., "A relational model of data for large shared data banks," Communications
of the ACM 13 (6), June 1970, 377-387.

9. Geurts, L., and L. Meertens, Remarks on Abstracto, Mathematisch Centrum, Technical
Report 99, November 1978.

10. Hammer, M., and D. MclLeod, "A framework for data base semantic Integrity," in
Second International Conference on Software Engineering, pp. 498-504, October
19786.

11. Hammer, M., and D. MclLeod, "The semantic data modei: A modelling mechanism for

data base applications," in International Conference on the Management of Data, ACM
SIGMOD, May 1978.

Hill, 1.D., "Wouldn't it be nice if we could write computer programs in ordinary English
== or would it? " Computer Bulletin 16 (8), June 1972, 308-312.

Liskov, B., A. Snyder, R. Atkinson, and C. Schaffert, "Abstraction mechanisms in
CLU," Communications of the ACM 20 (8), August 1977, 5664-576.

Smith, J., and D. Smith, "Database abstractions: aggregation and generalization,"
ACM Transactions on Database Systems 2 (2), June 1077, 105-133.

28

18.

186.

17.

Sowa, J., "Conceptual graphs for a database interface," IBM JR 20 (4), July
1976, 336-357.

Winograd, T., "Beyond programming languages," Communications of the ACM 22 (7),
July 1979, 391-401.

Wuif, W., R. London, and M. Shaw, "An introduction to the construction and
veritication of Alphard programs,” /EEE Transactions on Software Engineering SE-2
(4), December 1976, 253-265.

